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Alzheimer disease (AD) is a progressive dementia affecting a 
large proportion of the aging population. The histopathological 
changes in AD include neuronal cell death, formation of amyloid 
plaques and neurofibrillary tangles. There is also evidence that 
brain tissue in patients with AD is exposed to oxidative stress 
(e.g., protein oxidation, lipid oxidation, DNA oxidation and 
glycoxidation) during the course of the disease. Advanced glyca-
tion endproducts (AGEs) are present in amyloid plaques in AD, 
and its extracellular accumulation may be caused by an accelerated 
oxidation of glycated proteins. AGEs participate in neuronal death 
causing direct (chemical) and indirect (cellular) free radical produc-
tion and consequently increase oxidative stress. The development 
of drugs for the treatment of AD that breaks the vicious cycles of 
oxidative stress and neurodegeneration offer new opportunities. 
These approaches include AGE-inhibitors, antioxidants and anti-
inflammatory substances, which prevent free radical production.

Introduction

Alzheimer disease (AD) is a progressive dementia afecting a large 
proportion of the aging population. A lot of attention has been 
focused on the histopathological changes in AD, including wide-
spread neuronal cell death, the formation of amyloid plaques and 
neurofibrillary tangles (NFTs). The major component of the amyloid 
plaques is amyloid β-peptide (Aβ). Although Aβ is toxic to neurons 
in cell culture, Aβ deposits formed by overexpression of the amyloid 
precursor protein (APP) in transgenic mice does not cause suficient 
neuronal death, suggesting that additional factors are necessary to 
promote the progression of the disease. Early signs of tangle forma-
tion in certain brain regions such as the entorhinal cortex precede 
the clinical diagnosis of AD. The major component of NFTs is 
hyperphosphorylated microtubule-associated protein tau (MAP-tau). 

The abnormal MAP-tau is resistant to proteolitic enzymes suggesting 
that glycation, disulphide bond formation, phosphorylation and/or 
formation of core fragments contribute to extensive cross-linking 
between MAP-tau monomers.

We will introduce “advance glycation end products” (AGEs) and 
oxidative stress as the interacting key factors, promoting the trans-
formation of soluble proteins into insoluble proteins deposits, as well 
as activating the microglia through specific ligands for cell surface 
receptors.

Oxidative Stress and Alzheimer Disease

There is overwhelming evidence that brain tissue in AD patients 
is exposed to oxidative stress during the course of the disease  
(Fig. 1). Since oxidative stress is characterized by an imbalance in 
radical production of reactive oxygen species (ROS) and antioxida-
tive defense, both are considered to have a major role in the process 
of age-related neurodegeneration and cognitive decline.1-9

Evidence of oxidative stress in AD is manifested through high 
levels of oxidised proteins, advanced glycation end products, lipid 
peroxidation end products, formation of toxic species, such as perox-
ides, alcohols, aldehydes, free carbonyles, ketones, cholestenone and 
oxidative modifications in nuclear and mitochondrial DNA.10-21

Age-related memory impairments correlate with a decrease in 
brain and plasma antioxidants defense mechanism.22,23 An important 
aspect of the antioxidant defense system is the low molecular weight 
reducing equivalent glutathione, which is responsible for the endog-
enous redox potential in the cell.24 The most important function of 
glutathione is to donate electrons to ROS and by doing so to scav-
enge them. Intracellular glutathione (GSH) concentration decreases 
with age in different animal models,25-30 and it also decreases in 
aged mammalian brain regions including hippocampus.31-33 The 
decrease in GSH leads to a situation where the rate of ROS produc-
tion exceeds the antioxidant ability, generating a situation that favors 
oxidative stress. A further reason for oxidative stress is caused by an 
imbalance among the radical detoxifying enzymes in AD.34
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Protein Oxidation

ROS mediated oxidation of 
protein side-chains has been 
reviewed,35 and it results in the 
introduction of hydroxyl groups or 
in the generation of protein based 
carbonyls. Carbonyl groups are 
introduced in proteins by oxidizing 
amino acid residue side-chain 
hydroxyls into ketone or aldehyde 
derivatives.36 A variety of oxidative 
pathways lead to carbonylation of 
proteins.37 Carbonyl groups can 
also be introduced in proteins by 
direct oxidation of lysine, arginine, 
proline and threonine residues, or 
from the cleavage of peptide bonds 
by the α-amidation pathway or by 
the oxidation of glutamyl residues. 
ROS can also react with other 
molecules, such as lipids (lipid 
oxidation), DNA (DNA oxida-
tion) and sugars (glycoxidation), 
resulting in the generation of reactive carbonyl derivatives and 
aldehydes, which may in turn react with proteins and form protein-
bound carbonyls. Measurement of protein carbonylation is thought 
to be a good estimation for the extent of oxidative damage of proteins 
associated with various conditions of oxidative stress, aging, physi-
ological disorders and AD.38-40

Lipid Oxidation in AD

Aβ induces lipoperoxidation of membranes and lipid peroxida-
tion products.41 Lipids are modified by ROS and there is a strong 
correlation between lipid peroxides, antioxidant enzymes, amyloid 
plaques and NFTs in AD brains.42 Several breakdown products of 
oxidative stress, including 4-hydroxy-2,3-nonenal (HNE), acrolein, 
malondialdehyde and F2-isoprostanes have been observed in AD 
brains compared to age-matched controls.43-46 HNE is able to 
modify proteins, resulting in a multitude of effects, including inhibi-
tion of neuronal glucose and glutamate transporters, inhibition of 
Na-K ATPases, activation of kinases and dysregulation of intracel-
lular calcium signalling, that ultimately induce an apoptotic cascade 
mechanism.47-49 NFTs bear the footprints of oxidative membrane 
damage since they contain adducts of malondialdehyde and HNE, 
the most highly reactive lipid peroxidation products. Furthermore, 
dystrophic neurites of senile plaques that contain NFTs filaments 
show greater membrane damage than those that lack filaments. 
Evidence continues to mount that bifunctional HNE are the major 
cytotoxic products of lipid peroxidation. Following lipid peroxida-
tion, a 2-pentylpyrrole modification of lysine is the only presently 
known “advanced” (stable end-product) adduct that forms from 
the modification of proteins by HNE in AD cases. These findings, 
together with the recent demonstration that HNE is cytotoxic to 
neurons and that it impairs the function of membrane proteins 
including the neuronal glucose transporter GLUT 3, indicate that 
HNE is a characteristic marker and a toxin leading to neurodegen-
eration in AD.50

DNA Oxidation in AD

DNA bases are vulnerable to oxidative stress damage involving 
hydroxylation, protein carbonylation and nitration.21,51,52 It has 
been observed in AD that brain ROS induces calcium influx, via 
glutamate receptors and triggers an excitotoxic response leading to 
cell death.48 ROS are generated when oxygen reacts with unregu-
lated redox-active metals.53 DNA and RNA oxidation is marked 
by increased levels of 8-hydroxy-2-deoxyguanosine (8OHdG) and 
8-hydroxyguanosine (8OHD).54-56 Furthermore, these markers have 
been localized in Aβ plaques and NFTs.57 Increased levels of DNA 
strand breaks have been found in AD. They were first considered 
to be part of apoptosis, but it is now widely accepted that oxidative 
damage is responsible for DNA strand breaks and this is consistent 
with the increased free carbonyls in the nuclei of neurons and glia 
in AD. The induction of heme oxygenase-1, an antioxidant enzyme 
involved in the conversion of heme to bilirubin, is increased in AD 
brains and is tightly correlated with NFTs.

Glycoxidation in AD

Advanced glycation end products (AGEs), which are formed 
by a non-enzymatic reaction of sugars with long lived protein 
deposits, are also potent neurotoxins and proinflammatory molecules  
(Fig. 2). Glycation of proteins starts as a nonenzymatic process 
with the spontaneous condensation of ketone or aldehyde groups of 
sugars with a free aminoacid group of proteins to form a labile Schiff 
base, consistent with the classical reaction described by Maillard in 
1912.13 A cascade of reactions results thereafter in the formation of 
AGEs, which are composed of irreversibly cross-linked heterogeneous 
protein aggregates. There is increasing evidence that the insolubility 
of Aβ plaques is caused by extensive covalent protein cross-linking.58 
One mechanism by which long-lived proteins can be cross-linked 
involves AGEs.59,60 Extracellular AGEs accumulation has been 
demostrated in senile plaques in different cortical areas in primi-

Figure 1. Sources and effects of oxidative stress on a molecular and cellular level.
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cultured neurons. Aβ impairs glucose transport, which is followed 
by a decrease in cellular ATP levels. It has been suggested that this 
effect is caused by conjugation of HNE, produced by lipid peroxida-
tion, to the neuronal glucose transport protein GLUT3.78,79 Lipid 
peroxidation caused by other sources of oxidative stress, such as acti-
vated microglia or free extracellular iron, may contribute to decreased 
glucose uptake and neuronal degeneration. This is consistent with 
histopathological findings in AD, where decreased membrane 
fluidity in mitochondria and increase levels of oxidized 8OHdG in 
mitochondrial DNA can be observed, and suggest a link between 
oxidative stress and glucose utilization.19

Oxidative stress and energy depletion simulated by addition 
of chemical uncoupling agents to neuroblastoma cells leads to the 
appearance of NFTs; feeding a thiamine-deficient diet to rodents 
leads to the formation of dystrophic neurites similar to those in AD. 
The oxidatively-compromised animals develop AD-type neuritic 
dystrophy suggesting that disturbed energy metabolism and subse-
quent oxidative stress may be a common denominator of neuritic 
dystrophy.80

NFTs, which are largely composed of MAP-tau protein, and 
senile plaques, which contain aggregates of the Aβ, are realted to 
disturbances in the balance between protein phosphorylation and 
dephosphorylation. Various studies have shown that injection of 
the phosphatase inhibitor okadaic acid in rat brain, results in severe 
memory impairment, as well as the presence of MAP-tau protein 
in paired helical filaments and formation of plaques containing 
Aβ.81-83

Positive Feedback Loops in the Pathogenesis of Alzheimer 
Disease

One of the characteristics of degenerative processes is the creation 
of positive feedback loops or vicious cycles. To define a vicious circle 
of neurodegeneration in AD, characteristic factors have to be defined 
which promotes the generation of ROS, amplified production of 
AGEs and inflammation. The “error catastrophe theory” proposes 

tive plaques and coronas of classic plaques. Immunohistochemical 
studies demostrate that AGEs colocalize to a very high degree with 
ApoE.61 Accumulation of extracellular AGEs in AD is caused by 
an accelerated oxidation of glycated proteins (“glycoxidation”).62 
Intracellular proteins deposits including NFTs, Lewy bodies of 
patients with Parkinson’s disease and Hirano bodies are also cross-
linked by AGEs,63 which may explain their insolubility in detergents 
and resistance to proteases. The major component of the NFTs, the 
microtubuli-associated protein tau (MAP-tau) has been shown to be 
subject to intracellular AGEs formation. MAP-tau can be glycated 
in vitro, inhibiting its ability to bind to microtubules. In addition, 
MAP-tau isolated from brains of AD patients is glycated in the tubu-
lin-binding region, giving rise to the formation of β-sheet fibrils.64,65 
Some studies have shown the presence of AGEs in association with 
two major proteins of AD, Aβ66 and MAP-tau.13,67 This observation 
supports the argument that AGEs are involved in the pathogenesis of 
AD.68,69 Free radicals are involved in glycation processes and clearly 
can foster the formation of Aβ cross-linking.70

Glucose Metabolism in Alzheimer Disease

In vivo imaging of AD patients using positron emision tomography 
with 2-[F-18]-fluoro-2-deoxy-D-glucose demonstrates progressive 
reduction in brain glucose metabolism and blood flow in severe 
dementia. Glucose metabolism in the brain limits the synthesis of 
acetylcholine, glutamate, aspartate, γ-aminobutyric acid, glycine and 
ATP production. Whereas the cerebral energy pool is only slightly 
diminished during the normal aging process, glucose metabolism 
and cellular energy production are severely reduced in AD.71,72 The 
hypothesis that genetic or environmental factors lead to an intracel-
lular glucose hypometabolism which might predispose for both AD 
and adult-onset diabetes (NIDDM) is supported by large epidemo-
logic studies. These studies demonstrate that NIDDM significantly 
increases the risk to develop AD.73-77

The first type of evidence for a link between oxidative stress (e.g., 
caused by Aβ) and impaired glucose transport has been shown in 
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Figure 2. Chemical reactions leading to the formation of advanced glycation endproducts.
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Pharmacological Interference with Age Formation or 
Signalling as a Novel Treatment Strategy

The development of drugs for the treatment of AD remains at a 
very unsatisfying state. However, pharmacological approaches which 
break the vicious cycle of oxidative stress and neurodegeneration offer 
new opportunities for the treatment of AD. These approaches include 
AGE-inhibitors (aminoguanidine,  pyridoxamine),  antioxidants 
(thioctic acid, vitamin E, vitamin C, β-carotin) and nonsteroidal 
antiinflammatory substances, which do not only scavenge radicals 
passively but interfere with signal transduction pathways, thereby 
preventing radical production.

AGE inhibitors might be able to stop formation of AGE-modified 
Aβ deposits or modify their structure with subsequent loss of AGEs 
binding to RAGE.88,89 Antioxidants are likely to scavenge intracel-
lular and extracellular superoxide radicals and hydrogen peroxide 
before these radicals damage cell constituents or activate micro-
glia through their action as intracellular second messengers.90-94 
Antiinflammatory drugs act similarly, attenuating microglial radical 
and cytokine production.95-97

With our growing understanding of the molecular basis of the 
clinical symptoms of dementia, particularly positive feedback loops 
involving oxidative stress, it is hoped that elucidation of the etio-
pathogenesis of AD will help to develop novel “neuroprotective” 
treatment strategies able to interrupt the vicious cycle of oxidative 
stress and neurodegeneration.
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Figure 3. Direct and indirect effects of advanced glycation endproducts through crosslinking of Aβ peptide.
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